位置:成果数据库 > 期刊 > 期刊详情页
半监督FSVM在羽绒菱节识别中的应用
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]江南大学物联网工程学院,江苏无锡214122
  • 相关基金:国家自然科学基金(N0.60975027)
中文摘要:

目前,我国对羽绒种类的识别主要由人工借助于显微镜完成,这种方法存在许多不足。提出将半监督FSVM算法引入到羽绒识别中,用半监督学习方法以少量的训练样本为基础,扩大训练样本集的规模,同时利用FSVM的特性减少半监督学习所带来的误差;利用半监督FSVM对经过处理的羽绒二值化图像中的菱节进行识别。该方法提高了菱节识别的准确率。

英文摘要:

Currently, most work of feather and down category recognition is done by man with a microscope, but this method has many disadvantages. FSVM based on Partial Supervision (PS-FSVM) is applied to feather and down category recognition. PS-FSVM is used to increase the size of training samples, which is based on a small number of labeled training samples. Then it uses the characteristics of FSVM to reduce the impact of misclassified samples which caused by semi-supervised learning. After the image processing, the triangle node of two-value image of feather is to be recognized with PS-FSVM. The results show PS-FSVM improve the recognition rate of the triangle node.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887