位置:成果数据库 > 期刊 > 期刊详情页
基于有效神经元的自组织模糊神经网络算法
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP183[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]江南大学物联网工程学院,江苏无锡214122, [2]江南大学数字媒体学院,江苏无锡214122
  • 相关基金:国家自然科学基金(No.60903100,No.60975027);江苏省自然科学基金(No.BK2009067).
中文摘要:

针对传统神经网络识别率低和泛化能力差的问题,提出了一种改进的自组织模糊神经网络(SOFNN)学习算法。以保存椭球基函数(EBF)层各个神经元的输出及输出之和为依据进行神经元的修改,删除和增加,进而得到网络的有效神经元,并减少样本训练的时间。用最小二乘法(RLsE)估计参数,用梯度下降法修改参数,保证网络收敛。与其他的模糊神经网络相比,在精确度、结构复杂性和抗干扰性方面的优越性,在真实数据集上得到了有效的验证。

英文摘要:

Aimed at the problem that the low recognition rate and the poor generalization ability in traditional neural networks, an improved learning algorithm of Self-Organizing Fuzzy Neural Network (SOFNN) is presented. In this algorithm, it is as a basis for modifying, deleting and adding neurons that each neuron output and the sum of all these neurons output in the Ellipsoidal Basis Function (EBF) layer are stored. Then it can obtain effective neurons of the network and reduce the training time of samples. In order to ensure the network convergence, it uses the least square method (RLSE) to estimate the parameters and uses gradient descent method to modify the parameters. Compared with other fuzzy neural networks, the superiority in the accuracy, structure complexity and anti-jamming is effectively verified in the real data set.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887