讨论了具有奇异振动外力项的Kuramoto-Sivashinsky方程ut+Δ2 u+Δu+u·▽u=g(x,t)+ε-ρh(t/ε),u|t=τ=uτ和相应的Kuramoto-Sivashinsky方程ut+Δ2 u+Δu+u·▽u=g(x,t),u|t=τ=uτ在外力项g(x,t),h(x,t/ε)仅满足平移有界而非平移紧时H2per空间中一致吸引子Aε的存在性,进一步证明了第一个方程的一致吸引子Aε的一致有界性,并且,当ε→0+时,Aε收敛到第二个方程的吸引子A0.
In this paper,the existence of uniform attractors Aεis proved in the space H2 per when the external force terms satisfy the bounded transition instead of transition impact within the non-autonomous Kuramoto-Sivashinsky equation:ut+Δ2u +Δu+u·▽u=g(x,t)+ε-ρh(t/ε),u|t=τ=uτ for ρ∈[0,1]and ε0 and the corresponding K-S equation:ut+Δ2u +Δu+u·▽u=g(x,t),u|t=τ=uτ,asε=0.Furthermore,the uniform(w.r.t.ε)boundedness of a class of uniform attractors Aεare verified as well as the convergence of the attractors Aεfor the first equation to the attractor A0 of the second one asε→0+.