位置:成果数据库 > 期刊 > 期刊详情页
集合卡尔曼滤波估计水文地质参数的局域化修正
  • 期刊名称:水科学进展
  • 时间:0
  • 页码:613-621
  • 语言:中文
  • 分类:P345[天文地球—水文科学;天文地球—地球物理学]
  • 作者机构:[1]污染控制与资源化研究国家重点实验室,南京大学水科学系,江苏南京210093
  • 相关基金:国家自然科学基金资助项目(40725010;40672160)
  • 相关项目:水文地质学
中文摘要:

集合卡尔曼滤波(Ensemble Kalman Filter,EnKF)作为一种有效的数据同化方法,在众多数值实验中体现优势的同时,也暴露了它使用小集合估计协方差情况下精度较低的缺陷。为了降低取样噪声对协方差估计的干扰并提高滤波精度,应用局域化函数对小集合估计的协方差进行修正,即在协方差矩阵中以舒尔积的形式增加空间距离权重以限制远距离相关。在一个二维理想孔隙承压含水层模型中的运行结果表明,局域化对集合卡尔曼滤波估计地下水参数的修正十分有效,局域化可以很好地过滤小集合估计中噪声的影响,节省计算量的同时又可以防止滤波发散。相关长度较小的水文地质参数(如对数渗透系数)更容易受到噪声的干扰,更有必要进行局域化修正。

英文摘要:

The ensemble Kalman filter (EnKF) is a sophisticated sequential data assimilation method.The EnKF has proven to be efficient handling of strong nonlinear dynamics and large state spaces.However,EnKF uses a relatively small ensemble of forecasts to estimate the forecast error covariance,which can introduce spurious correlations that lead to excessive decrease of the ensemble variance and possibly filter divergence.The spurious correlations can be handled by a localization method.In the method,the ensemble covariance matrix is multiplied with a specified correlation matrix through a Schur product (entry-wise multiplication),which can effectively truncate the long-range spurious correlations produced by the limited ensemble size.The revised EnKF is tested numerically for a two-dimensional synthetic case.The result shows that localization can largely reduce the sampling errors due to small ensembles size with high efficiency,as well as can avoid filter divergence to a large extent.Applications of localization for the EnKF are also necessary to conduct localized corrections for the estimation of hydrogeological parameters with relatively small values of the correlation length.

同期刊论文项目
期刊论文 124 会议论文 35 获奖 6 专利 11 著作 3
同项目期刊论文