测量不确定度是表征测量结果可靠性的一个重要参数。针对蒙特忙罗方法在测量不确定度评定时存在的收敛速度较慢以及仿真结果不稳定的不足,利用拟蒙特卡罗方法进行测量不确定度的评定。拟蒙特卡岁方法使用拟随机数进行仿真计算。在测量不确定度的评定中,先基于Halton序列产生分布较为均匀的随机数,再利用数学变换转换成服从相应概率分布的随机数进行仿真评定计算。对圆柱体积测量不确定度的模拟计定结果表明,拟蒙特卡岁方法收敛速度快,计算结果较为稳定,可以简单高效地用于测量不确定度的计定。
Measurement uncertainty is an important parameter to evaluate the reliability of the measurement results. Because of the limitations of low convergence and unstable results of Monte-Carlo method, quasi Monte-Carlo method is used to estimate the measurement uncertainty. Quasi Monte-Carlo method is an improvement of ordinary Monte Carlo method, which employs highly uniform quasi random numbers to replace Monte Carlo' s pseudo random numbers. In the process of evaluation, more homogeneous random numbers or quasi random numbers are first generated based on Halton' s sequence. These random numbers are then transformed into the desirable distributed random numbers. A measurement experiment of uncertainty evaluation for the bulk of a cylinder shows that the quasi Monte- Carlo method has higher convergence rate and more stable evaluation results than those of Monte-Carlo method. Therefore, the quasi Monte-Carlo method can be applied effectively to evaluate the measurement uncertainty.