有限质点法是以向量力学为基础的崭新的结构分析方法,该文将其应用到结构动力非线性行为分析中。该方法将结构离散为质点群,采用牛顿定律描述质点的运动,通过对质点行为的模拟和分析计算结构行为。该文介绍了有限质点法的基本思想,提出了该方法分析结构“动”与“静”,“线性”与“非线性”问题的独特思路。以杆系结构为例,推导了该方法求解结构动力反应,及几何、材料非线性问题的基本公式。通过三个数值算例,验证了该方法在结构动力非线性行为分析中的正确性和适用性。有限质点法在处理动力非线性问题时无需迭代求解和特殊修正,与传统方法相比在结构复杂行为分析中有明显的优势。
The Finite Particle Method (FPM), based on the Vector Mechanics, is a new structural analysis method. This paper explores the possibility of the proposed method being applied in the structural dynamic nonlinear analysis. In FPM, the analyzed domain is discreted to be a group of finite particles, where the motions of all particles follow Newton's second law. To obtain the structural motion behaviors, particle motions are simulated. The theoretical fundamentals oft he FPM are given. Special methods to handle 'Static' and 'dynamic', 'linear' and 'nonlinear' analysis in FPM are proposed. Taking the three dimensional bar element as an example, the formulations to calculate the dynamic, geometric and material nonlinear problems are derived. Three numerical examples are presented to demonstrate the accuracy and applicability of this method in dynamic nonlinear analysis. Iteration and special modification are not needed during the dynamic nonlinear analysis, which is more advantageous than traditional methods in the structural complex behavior analysis.