位置:成果数据库 > 期刊 > 期刊详情页
基于感兴趣脑区LASSO-Granger因果关系的脑电特征提取算法
  • ISSN号:1009-5896
  • 期刊名称:《电子与信息学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:杭州电子科技大学机器人研究所,杭州310018
  • 相关基金:国家自然科学基金(61201302,61172134),国家留学基金(201308330297),浙江省自然科学基金(LY15F010009)
中文摘要:

该文将脑功能网络引入到脑电特征提取的研究中,提出一种基于感兴趣脑区LASSO-Granger因果关系的新方法,克服了当前基于孤立脑区的研究方法的不足。先利用主成分分析提取各感兴趣区的最大主成分,然后计算它们之间的LASSO-Granger因果度量,并将其作为特征向量,最后输入支持向量机分类器,对BCI Competition IV dataset 1中的4组数据进行分类识别。结果表明,基于感兴趣脑区间LASSO-Granger因果关系分析和支持向量机分类器的方法对不同的运动想象任务识别率较高,提供了新的研究思路。

英文摘要:

Brain functional network is introduced to feature extraction of Electro Encephalo Graphy(EEG), and a novel method is proposed based on Least Absolute Shrinkage and Selection Operator(LASSO)-Granger causality between Region Of Interest(ROI) in the brain, in order to overcome the inherent deficiencies of research methods based on isolated brain region. Firstly, the maximum principal component of ROIs is extracted by Principal Component Analysis(PCA), and then causality values between ROIs are calculated by LASSO-Granger. Finally, the values are used as the input vector for Support Vector Machine(SVM), and then four datasets of BCI Competition IV Dataset 1 are used for classification.Experimental results show that different motor imagery tasks are successfully identified by the method of SVM classifier combined with feature extraction which is based on LASSO-Granger causality between the brain region of interest(ROIs). This method provides a new idea for the study of extracting EEG features.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电子与信息学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院电子学研究所 国家自然科学基金委员会信息科学部
  • 主编:朱敏慧
  • 地址:北京市北四环西路19号
  • 邮编:100190
  • 邮箱:jeit@mail.ie.ac.cn
  • 电话:010-58887066
  • 国际标准刊号:ISSN:1009-5896
  • 国内统一刊号:ISSN:11-4494/TN
  • 邮发代号:2-179
  • 获奖情况:
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:24739