位置:成果数据库 > 期刊 > 期刊详情页
基于双密度小波邻域相关阈值处理的脑电信号消噪方法
  • ISSN号:1003-6059
  • 期刊名称:模式识别与人工智能
  • 时间:2014.5.15
  • 页码:403-409
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]杭州电子科技大学智能控制与机器人研究所,杭州310018
  • 相关基金:国家自然科学基金项目(No.61172134 61201300)、浙江省国际科技合作项目(No.2013C24016)资助
  • 相关项目:融合生物运动信息的上肢功能康复评价研究
中文摘要:

为消除混杂在脑电信号( EEG)中的噪声,提出一种基于双密度小波邻域相关阈值处理的EEG消噪方法。利用双密度小波对EEG分解,得到多层的信号高频系数。根据小波系数的局部统计依赖性,运用邻域相关阈值处理算法进行收缩,将收缩后的小波系数进行重构得到消噪后的信号。对加噪标准信号和实测EEG的消噪实验结果表明,与一代离散小波和传统软阈值法相比,信噪比、均方根误差和最大误差3个消噪效果评价指标都有明显改善。

英文摘要:

To eliminate the noise mixed in Electroencephalogram ( EEG ) , an EEG de-noising method is proposed based on double-density discrete wavelet transform using neighbor-dependency thresholding. Firstly, high frequency coefficients of multilayer signals are obtained by double-density discrete wavelet decomposition. Then, the wavelet coefficients are shrunk with neighbor-dependency thresholding algorithm, which takes the statistical dependencies of the wavelet coefficients into account. Finally, the de-noising signal is obtained by reconstructing shrunk wavelet coefficients. The simulation results of the de-noising experiments on standard noise-adding signal and real EEG show that compared to the first generation discrete wavelet algorithm and traditional soft threshold methods, the proposed de-noising algorithm has the benefits of higher SNR, lower RMSE and Errmax .

同期刊论文项目
同项目期刊论文
期刊信息
  • 《模式识别与人工智能》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会 中国自动化学会
  • 主办单位:国家智能计算机研究开发中心 中国科学院合肥智能机械研究所
  • 主编:郑南宁
  • 地址:安徽省合肥市蜀山湖路350号中国科学院合肥智能机械研究所
  • 邮编:230031
  • 邮箱:bjb@iim.cas.cn
  • 电话:0551-5591176
  • 国际标准刊号:ISSN:1003-6059
  • 国内统一刊号:ISSN:34-1089/TP
  • 邮发代号:26-69
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:10169