为了解决未标识样本的分类问题,提出一种基于多维度收缩的、新的排序一模糊神经网络分类器模型OFMM.该模型首先利用多维度收缩法对输入的所有样本进行排序,然后获得样本间的相似性测度值.并利用该相似性测度值指导随后的分类器超盒扩张与压缩过程,从而使得该模型不仅提高对未标识样本进行有效分类的性能,而且无论是在网络结构方面,还是在训练时间方面都有所改进.有关标准数据集的实验结果表明,该模型明显优于传统的通用模糊神经网络,是一种较实用且有效的分类器.
An ordination-fuzzy min-max neural network(OFMM) based on non-metric multidimensional scaling (MDS) is proposed to solve the classification problems of unlabelled input pattern. Firstly, all the input patterns are sorted by MDS to get their similarity measures. Then these measures are used to supervise the following expansion and contraction stage of hyperboxes for classifica- tion. OFMM shows the improvements in the validity of unlabelled patterns classification, the network structure, and training time. The experimental results on standard dataset demonstrate that OFMM is a practical and effective classifier which is superior to the traditional general-fuzzy min -max neural network (GFMM).