位置:成果数据库 > 期刊 > 期刊详情页
半监督型广义特征值最接近支持向量机
  • 期刊名称:模式识别与人工智能
  • 时间:0
  • 页码:349-353
  • 语言:中文
  • 分类:TP393[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]南京航空航天大学计算机科学与工程系,江苏南京210016
  • 相关基金:国家自然科学基金No.60773061;;国家高技术研究发展计划(863)No.2006AA706103;;航空基金No.05F2037
  • 相关项目:分类器的局部性正则化设计技术研究
中文摘要:

在分析了无线传感器网络的布局基本符合流形(manifold)特点的基础上,借助所提出的局部保持的典型相关分析(locality preserving canonical correlation analysis,简称LPCCA)进行建模,以建立从信号强度空间到现实物理空间的映射;进而提出了一种能够体现网络拓扑结构局部信息的无线传感器网络定位算法——LE-LPCCA(location estimation-locality preserving canonical correlation analysis).与现有同类算法在benchmark上的实验结果相比,LE-LPCCA具有更高的定位精度和稳定性.

英文摘要:

In this paper,the deployment of wireless network is analyzed in accordance with the manifold distribution.Next,the previous Locality Preserving Canonical Correlation Analysis(LPCCA) algorithm is used to build a mapping from the signal-vector space to the physical location space and develop a location algorithm,Location Estimation-Locality Preserving Canonical Correlation Analysis(LE-LPCCA,for short),which sufficiently takes the local structure of the network topology into account.Finally,experimental results on benchmark show that this method achieves a higher accuracy and stability than other location algorithms.

同期刊论文项目
期刊论文 38 会议论文 15
同项目期刊论文