非对易空间效应的出现引起了物理学界的广泛兴趣。介绍了非对易空间中量子力学的代数关系,在所考虑的空间变量的对易关系中包含了坐标一坐标的非对易性,并且把Moyal—Weyl乘法在非对易空间中通过一个Bopp变换转变成普通的乘法。然后给出了非对易空间中耦合谐振子的能级分裂情况。
The effect of noncommutativity of space have caused the physical academic circles widespread interest. In this paper, the non-commutative (NC) is introduced, which contain non-commutative of coordinate-coordinate, and find that the Moyal-Weyl product in NC space can be replaced with a Bopp shift. Then, the energy splitting of the coupling harmonic oscillator in non-commutative spaces are discussed.