利用映射的Fréchet可微的概念研究具约束的向量均衡问题的弱有效解,Henig有效解,超有效解以及全局有效解的最优性条件,在不具任何凸性条件下给出了的向量均衡问题的K-T必要性条件,在加上凸性条件下给出了向量均衡问题的K-T充分性条件。
By using the concept of Fréchet differentiability of mapping,it presents the K-T conditions for weakly efficient solution,Henig efficient solution,superefficient solution and globally efficient solution to the vector equilibrium problems with constraints,and gives K-T necessary conditions to the vector equilibrium problems without convexity conditions conditions and Kuhn-Tucker sufficient conditions with convexity conditions.