位置:成果数据库 > 期刊 > 期刊详情页
基于MapReduce的K-means聚类集成
  • ISSN号:1000-3428
  • 期刊名称:《计算机工程》
  • 时间:0
  • 分类:TP311.13[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:山西财经大学信息管理学院,太原030006
  • 相关基金:国家自然科学基金项目(No.60873100)、山西省自然科学基金项目(No.2014011022-2,2013011016-4)、中国博士后科学基金面上项目(No.2016M591409)资助
中文摘要:

基于粒计算视角,提出粒化一融合框架下的海量高维数据特征选择算法.运用BLB(Bag of Little Bootstrap)的思想,首先将原始海量数据集粒化为小规模数据子集(粒),然后在每个粒上构建多个自助子集的套索模型,实现粒特征选择,最后,各粒特征选择结果按权重融合、排序,得到原始数据集的有序特征选择结果.人工数据集和真实数据集上的实验表明文中算法对海量高维数据集进行特征选择的可行性和有效性.

英文摘要:

From a granular computing perspective, a feature selection algorithm based on granutatlon~tuslon Ior massive and high-dimension data is proposed. By applying bag of little Bootstrap (BLB), the original massive dataset is granulated into small subsets of data ( granularity), and then features are selected by constructing multiple least absolute shrinkage and selection operator (LASSO) models on each granularity. Finally, features selected on each granularity are fused with different weights, and feature selection results are obtained on original dataset through ordering. Experimental results on artificial datasets and real datasets show that the proposed algorithm is feasible and effective for massive high-dimension datasets.

同期刊论文项目
期刊论文 27 会议论文 6 著作 1
同项目期刊论文
期刊信息
  • 《计算机工程》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华东计算技术研究所 上海市计算机学会
  • 主编:游小明
  • 地址:上海市桂林路418号
  • 邮编:200233
  • 邮箱:ecice06@ecict.com.cn
  • 电话:021-64846769
  • 国际标准刊号:ISSN:1000-3428
  • 国内统一刊号:ISSN:31-1289/TP
  • 邮发代号:4-310
  • 获奖情况:
  • 1999~2000、2001~2002年度信息产业部优秀期刊奖,2003-2004、2005-2006年度信息产业部电子精品科技...,2007-2008、2009-2010年度工业和信息产业部电子精...,012年度中国科技论文在线优秀期刊一等奖,2013年度中国科技论文在线优秀期刊二等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:84139