位置:成果数据库 > 期刊 > 期刊详情页
基于半监督学习的SVM-KNN
  • ISSN号:1673-0291
  • 期刊名称:北京交通大学学报
  • 时间:0
  • 页码:97-100
  • 语言:中文
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]河北大学电子信息工程学院,河北保定071002
  • 相关基金:国家自然科学基金资助项目(60773062,60873100);河北省科技支撑计划项目资助(072135188);河北省教育厅科研计划项目资助(2008312)
  • 相关项目:不确定统计学习理论研究
中文摘要:

提出一种新的基于半监督的SVM—KNN分类方法,当可用的训练样本较少时,使用SVM进行分类,不能得到准确的分类边界,本文采用半监督学习策略从大量未标记样本中提取边界向量来改善SVM-KNN分类器的引进不仅扩充了SVM的训练样本数目,而且优化了迭代过程中训练样本的标记质量,可不断修复SVM的分类边界.实验结果表明,所提出的方法能提高SVM算法的分类精度,通过调整参数能够获得更好的分类效果,同时也减小了标记大量未标记样本的代价.

英文摘要:

In this paper a novel SVM-KNN classification methodology based on semi-supervised learning is proposed, we consider the problem of using a large number of unlabeled data to boost performance of the classifier when only a small set of labeled examples is available. We use the few labeled date to train a weaker SVM classifier and make use of the boundary vectors to improve the weaker SVM iteratively by introducing KNN. Using KNN classifier doesn't enlarge the number of training examples only, but also improves the quality of the new training examples which are transformed from the boundary vectors. Experiments on UCI data sets show that the proposed methodology can evidently improve the accuracy of the final SVM classifier by tuning the parameters and it reduces the cost of labeling unlabeled examples.

同期刊论文项目
期刊论文 27 会议论文 6 著作 1
期刊论文 68 会议论文 38 获奖 4 著作 3
同项目期刊论文
期刊信息
  • 《北京交通大学学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:北京交通大学
  • 主编:孙守光
  • 地址:北京市西直门外上园村3号北方交通大学8楼8101室
  • 邮编:100044
  • 邮箱:bfxb@bjtu.edu.cn
  • 电话:010-51688053
  • 国际标准刊号:ISSN:1673-0291
  • 国内统一刊号:ISSN:11-5258/U
  • 邮发代号:
  • 获奖情况:
  • 1995年铁道部科技期刊一等奖、1999年教育部组织的...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:5152