位置:成果数据库 > 期刊 > 期刊详情页
基于定性互信息的定性概率网歧义性约简
  • 期刊名称:吕亚丽,廖士中. 基于定性互信息的定性概率网歧义性约简. 模式识别与人工智能. 2011, 24(1
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]天津大学计算机科学与技术学院,天津300072, [2]山西财经大学信息管理学院,太原030031
  • 相关基金:国家自然科学基金(No.60678049)、天津市自然科学基金(No.07JCYBJC14600)资助项目
  • 相关项目:贝叶斯分类器与判别式学习方法研究
中文摘要:

针对符号传播算法在符号相反的两条平行路径上进行推理时常常产生歧义性,提出一种基于定性互信息的歧义性约简方法.首先,给出定性互信息的严格定义.然后,提出基于定性互信息影响强度的定性概率网,进一步区分影响强度,并证明具有强度的定性影响的对称性、传递性和复合性.最后在Antibiotics数据集上,通过与已有方法推理结果的对比实验,验证该歧义性约简方法的正确性和高效性.理论分析和实验结果表明,基于定性互信息的定性概率网既保留定性推理的简明性,又能够有效约简定性推理的歧义性.

英文摘要:

To reduce the inference ambiguity in the sign-propagation algorithm, a method is proposed based on qualitative mutual information in qualitative probabilistic networks (QPN). Firstly, the definition of qualitative mutual information is given. Then, an enhanced formalism of qualitative probabilistic networks (EQPN) is presented based on this definition, which can distinguish between strong and weak influences. Thirdly, symmetry, transitivity and parallel composition of qualitative influences in EQPN are analyzed. Finally, the correctness and efficiency of the sign-propagation algorithm in EQPN are verified by experiments on the Antibiotics database. Theoretic analysis and experimental results show that EQPN is qualitative, efficient, and it reduces inference ambiguity correctly.

同期刊论文项目
期刊论文 27 会议论文 6 著作 1
同项目期刊论文