We consider a cellular network with a full-duplex base station, multiple uplink users and an eavesdropper. The full-duplex base station transmits jamming signals to degrade the eavesdropper channel when receiving secure multi-user signals. To maximize the secrecy rate of uplink communications, we propose a distributed ascending-clock auction(ACA) algorithm to allocate subcarriers and jamming power. Specifically, the impact of the self-interference of the full-duplex base station on the secrecy rate is considered. The proposed algorithm consists of two parts. Firstly, subcarriers and the jamming power are respectively priced by the base station. Secondly, users select the subcarrier and the jamming power based on the price. Moreover, the convergence of the proposed auction algorithm is mathematically proved. Simulation results show that the proposed auction algorithm is more beneficial to improve the uplink secrecy performance compared to traditional auction algorithms.