位置:成果数据库 > 期刊 > 期刊详情页
基于粗糙集神经网络的旋转机械故障诊断
  • ISSN号:1671-4598
  • 期刊名称:《计算机测量与控制》
  • 时间:0
  • 分类:TP182[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]西北工业大学自动化学院,陕西西安710129
  • 相关基金:基金项目:国家自然科学基金(60873196),西北工业大学科技创新基金(W016144).
中文摘要:

针对旋转机械故障和故障征兆关系的复杂性及神经网络在故障诊断中存在网络结构复杂和训练时间长等问题,提出了一种基于粗糙集与神经网络结合的故障诊断方法;采用自组织映射方法对属性进行离散化,设计了一种自适应遗传算法对属性进行约简,将获得的最小条件属性集作为神经网络的输入;以轴承的故障诊断为例进行分析,结果表明,该方法在保证诊断正确率的同时,可以有效简化神经网络的结构,降低网络的训练时间;另外,设计的自适应约简算法在保证获得最小约简的基础上,大大加快了收敛速度;该方法可推广应用在其它机械设备的故障中。

英文摘要:

To overcome the problem of structure complexity and long training time in neural network method for fault diagnosis of rotating machine with fuzzy fault feature, a new fault diagnosis method based on rough set and neural network is presented. The self-organizing map method is used to get the discrete attributes fist, then an adaptive genetic algorithm is devised for attribute reduction, and finally the results of the attribute reduction is regard as the inputs of the neural network. The experimental results show that the reduction in rough set is improved, the structure of neural network is optimized, and the computational complexity is decreased.

同期刊论文项目
期刊论文 30 会议论文 10
同项目期刊论文
期刊信息
  • 《计算机测量与控制》
  • 北大核心期刊(2011版)
  • 主管单位:中国航天科工集团公司
  • 主办单位:中国计算机自动测量与控制技术协会
  • 主编:苟永明
  • 地址:北京海淀区阜成路甲8号中国航天大厦405
  • 邮编:100048
  • 邮箱:ly@chinamca.com
  • 电话:010-68371578 68371556
  • 国际标准刊号:ISSN:1671-4598
  • 国内统一刊号:ISSN:11-4762/TP
  • 邮发代号:82-16
  • 获奖情况:
  • 中国学术期刊综合评价数据库来源期刊,中国科技论文统计源期刊,“国家期刊奖百种重点期刊”
  • 国内外数据库收录:
  • 美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版)
  • 被引量:27924