位置:成果数据库 > 期刊 > 期刊详情页
基于多代价的决策粗糙集属性约简
  • ISSN号:1002-137X
  • 期刊名称:《计算机科学》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]江苏科技大学计算机科学与工程学院,镇江212003, [2]南京理工大学经济管理学院,南京210094
  • 相关基金:国家自然科学基金(61572242,61272419,61305058,61373062),江苏省青蓝工程人才项目,中国博士后科学基金(2014M550293)资助.
中文摘要:

与经典粗糙集相比,传统的决策粗糙集将代价考虑在内,利用代价矩阵生成一对阈值。但决策粗糙集不具备经典粗糙集的单调性,这为粗糙集的属性约简带来了新的挑战。传统的决策粗糙集中的代价矩阵只有一个,没有考虑到代价的变化性。首先介绍了多代价决策粗糙集下的悲观决策规则和乐观决策规则的定义,利用多个代价矩阵来生成阈值,并将其用于属性约简中。在属性约简中,从单独的决策类出发而不是基于全部的决策类提出了启发式的Local属性约简方法,且从相关实验结果中可以得到,相对于基于全部的决策类的属性约简,Local属性约简在乐观条件下比在悲观条件下能获得更多的正域规则。

英文摘要:

Compared with classic rough set, traditional decision-theoretic rough set takes the cost into consideration, using cost matrix to generate a pair of thresholds. But decision-theoretic rough set doesn~ t meet the monotonicity that has been widely used in classic rough set, which has brought a new challenge for us in the study of attribute reduction in rough set. Cost matrix in traditional decision-theoretic rough set is only one, doesn't think about the variability of cost. The pessimistic decision rules and the optimistic rules of muticost decision-theoretic rough set are introduced at first and the thresholds which generated by multiple cost matrix are applied to attribute reduction. An heuristic Local attribute reduction method is proposed not on whole decision class but rules from relevant experiment results in optimistic conditions on individual decision class, which can get more positive than in pessimistic conditions, when it compared with the method based on the whole decision class.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机科学》
  • 北大核心期刊(2011版)
  • 主管单位:重庆西南信息有限公司(原科技部西南信息中心)
  • 主办单位:重庆西南信息有限公司(原科技部西南信息中心)
  • 主编:陈国良
  • 地址:重庆市渝北区洪湖西路18号
  • 邮编:401121
  • 邮箱:jsjkx12@163.com
  • 电话:023-63500828
  • 国际标准刊号:ISSN:1002-137X
  • 国内统一刊号:ISSN:50-1075/TP
  • 邮发代号:78-68
  • 获奖情况:
  • 2001年重庆市优秀期刊,2004年第三届重庆市优秀科技期刊,2005年重庆市优秀期刊编辑部,2010年第六届重庆市期刊综合质量考核"十佳科技期刊",2012年重庆市出版专项资金报刊资助项目(重庆市新...,2013年重庆市出版专项资金重点学术期刊资助项目(...,2014年重庆市出版专项资金期刊资助项目(重庆市文...,2015年"中国国际影响力优秀学术期刊"
  • 国内外数据库收录:
  • 波兰哥白尼索引,美国乌利希期刊指南,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:41227