根据健康志愿者(右耳)完整的CT数据,建立了包括外耳道、鼓膜、听骨链、中耳韧带/肌肉以及内耳液体在内的有限元模型,真实完整地再现了其复杂结构及边界约束.通过鼓膜和镫骨底板位移模拟结果和文献实验数据的比较,说明了本数值模型是可信的.利用模型进行了外耳、中耳和内耳的声固耦合分析,研究了外耳道、镫砧关节和内耳液体对传声机制的影响.研究结果表明建立的人耳三维有限元模型对研究其声学力学特性是有效的.
A complete finite element model of the human ear can provide better understanding of sound transmission. In this paper, a three-dimensional finite element model of the human ear is established, including the external ear canal, tympanic membrane, ossicular bones, middle ear suspensory ligaments/muscles, and inner ear fluid. This model is constructed based on a complete set of computerized tomography section images of a healthy volunteer (right ear) to describe the complicated structures and boundary conditions. The validity of this model is confirmed by comparing the model-predicted motion of the tympanic membrane and stapes footplate with published experimental data. The acoustic-structural coupled finite element analysis among the ear canal, middle ear ossicles and inner ear fluid is conducted and employed to predict the effects of ear canal, incudostapedial joint and cochlear fluid on sound transmission mechanics. The results reveal that the final model is reasonable in predicting the ear acoustic mechanical properties.