以反相悬浮聚合技术合成的丙烯酰胺(AM)和甲基丙烯酸(MAA)共聚高分子微凝胶P(AM-co-MAA)为模板,结合反胶束法制备得到Ag3PO4-P(AM-co—MAA)复合微球,并将其分散于乙醇溶剂中通过化学还原Aq3PO4-P(AM-co-MAA)复合微球制备得到粒径为几十微米,具有表面图案,且结构为核-壳型的Ag-P(AM-co-MAA)复合微球材料.能量散射X射线(EDX)谱表明壳化学组成以金属银为主,核以高分子模板为主:扫描电子显微镜(SEM)观察结果表明银-高分子复合微球的表面形貌与其前驱体类似,且可以通过选择模板、改变模板组成、调整金属难溶银盐沉积量等因素加以调控;X射线衍射(XRD)分析表明前驱体复合微球表面Ag3PO4全部转化为单质银.生物抗菌实验表明该类微球材料对大肠杆菌、金黄色葡萄球菌均具有较强的抑制作用.
Ag3PO4-P(AM-co-MAA) composite microspheres were prepared by the combination of a polymeric microgel method and a reverse micelle technique. Novel silver-poly(acrylamide-co-methacrylic acid) [Ag-P(AM-co-MAA)] composite microspheres with sizes ranging in the tens of micrometers and containing a patterned surface as well as core/shell structures were prepared by the chemical reduction of Ag3PO4-P(AM-co-MAA) composite microspheres in ethanol. Energy dispersive X-ray (EDX) analysis revealed that the chemical composition of the "shell" is dominated by Ag, but the "core" is dominated by the template, P(AM-co-MAA). Scanning electron microscopy (SEM) results demonstrate that the surface morphology of the Ag-polymer composite microspheres is similar to that of their precursors and can be controlled to a certain extent by varying the composition of the template copolymer, the approaches and the amount of Ag3PO, deposited. X-ray diffraction (XRD) indicated that the salt had been completely converted to Ag. Biological antimicrobial experiments showed that this kind of composites exhibit distinctive antibacterial activity toward Escherichia coli and Staphylococcus aureus.