位置:成果数据库 > 期刊 > 期刊详情页
基于FFT和神经网络的复模态参数识别
  • ISSN号:1001-0505
  • 期刊名称:东南大学学报(自然科学版)
  • 时间:0
  • 页码:217-221
  • 语言:中文
  • 分类:TU317[建筑科学—结构工程]
  • 作者机构:[1]重庆大学土木工程学院
  • 相关基金:国家杰出青年科学基金资助项目(50625824);国家自然科学基金资助项目(50679097)
  • 相关项目:岩土工程减灾
中文摘要:

为了精确识别结构复模态参数,提出了一种基于快速傅里叶变换(FFT)和人工神经网络的模态识别方法.该方法首先对自由振动信号进行FFT预处理,得到粗略的各阶模态频率和相位.然后,根据模态的阶数设定神经元的个数,根据预处理后得到的频率和相位设定神经网络权值和基函数参数迭代的初始值.最后,通过对人工神经网络进行训练,达到利用自由振动信号进行时域模态识别的目的.仿真结果表明,该算法可消除频率法识别中因频谱泄露与噪声等产生的误差,提高模态识别的精度,因而是一种有效的时域识别方法.

同期刊论文项目
期刊论文 74 获奖 5 专利 6 著作 1
期刊论文 23 获奖 1 著作 1
同项目期刊论文
期刊信息
  • 《东南大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:教育部
  • 主办单位:东南大学
  • 主编:毛善锋
  • 地址:南京四牌楼2号
  • 邮编:210096
  • 邮箱:xuebao@seu.edu.cn
  • 电话:025-83794323
  • 国际标准刊号:ISSN:1001-0505
  • 国内统一刊号:ISSN:32-1178/N
  • 邮发代号:28-15
  • 获奖情况:
  • 先后荣获第三届国家期刊奖百种重点期刊奖,2006-2...,2013年荣获首届江苏省新闻出版政府奖"报刊奖"
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:23651