通过周期性释放天敌和化学控制的综合害虫管理(IPM)改进捕食者具有Holling Ⅲ型功能性反应系统:{dx(t)/dt=ax(t)-bx^2(t)-ax^2(t)y(t)/x^2(t)+β^t,dy(t)/dt=-cy(t)+kαx^2(t)y(t)/x^2(t)+β^2.得到一个新的系统:{dx(t)/dt=ax(t)=dx^2(t)-αx^2(t)y(t)/x^2(t)+β^t,dy(t)/dt=-cy(t)=kαx^2(t)y(t)/x^2(t)=β^2.}t≠nT,{△x(t)=-p1x(t),△y(t)=-pty(t)+q.}t=nT,给出当q〉0,0≤p1〈1,0≤p2〈1时,新系统的害虫周期全局渐近稳定性与新系统的持续生存条件.研究当q〉0,0≤p1〈1,p≤p2〈1时,新系统正周期解的存在性和当q≡0,0〈p1〈1,0≤p2〈1时,无捕食者周期解的存在和稳定性。
By introducing a constant periodic releasing natural enemies and integrated pest management,we devolop the system where the predator has Holling type Ⅲ functional response:{dx(t)/dt=ax(t)-bx^2(t)-ax^2(t)y(t)/x^2(t)+β^t,dy(t)/dt=-cy(t)+kαx^2(t)y(t)/x^2(t)+β^2.At the sametime,we obtain a new system:{dx(t)/dt=ax(t)=dx^2(t)-αx^2(t)y(t)/x^2(t)+β^t,dy(t)/dt=-cy(t)=kαx^2(t)y(t)/x^2(t)=β^2.}t≠nT,{△x(t)=-p1x(t),△y(t)=-pty(t)+q.}t=nT,When q〉0,0≤p1〈1 and p≤p2〈1 , we obtain conditions for global asymptotic stability of pesteradication periodic solution and permanence of the new system, and also obtain the existence of a postive periodic solution of the new system. Finally, we discuss the existence and stability of the predator-free periodic solution.