给出局部p-凸空间(0<p<1)中的p-滴状定理如下:设X为局部完备局部p-凸空间,A(∪)X为局部闭集且B(∪)X为局部闭,有界,p-凸集.若存在一个p-凸吸收集W使W∩(A-B)=(φ),则对于任意x0∈A,存在a∈Dp(x0,B)∩A使得Dp(a,B)∩A={a}.
A p-drop theorem in locally p-convex( 0< p < 1)spaces is given as follows. Let X be a locally complete locally p-convex spaoe,A(∪)X be a locally closed set and B(∪)X be a locally closed,bounded, p-convex set. If there exists a p-convex absorbing set W such that W∩ (A - B) = (φ),then for any x0∈A,there exitsts a ∈ Dp(x0,B) ∩A such that Dp(a ,B) ∩ A={a}.