程序性坏死(Necroptosis)是一种不同于凋亡及传统坏死的细胞程序性死亡方式,可由肿瘤坏死因子受体(Tumor necrosis factor receptor, TNFR)或模式识别受体(Pattern recognition receptor, PRR)调控启动。受体相互作用蛋白(Receptor-interacting protein, RIP)1和3是启动necroptosis的两个关键蛋白, necroptosis启动后需要一系列分子传递和执行死亡信号,如多核苷酸二磷酸-核糖聚合酶-1(Poly(ADP-ribose) polymerase, PARP-1)、活性氧簇(Reactive oxygen species, ROS)、Ca2+等,这些分子破坏线粒体及其他细胞器,最终使细胞在缺乏天冬氨酸半胱氨酸蛋白酶(Caspase)的情况下死亡。Necroptosis 细胞可将损伤相关模式分子(Damage-associated molecular patterns, DAMPs)暴露到细胞外,被吞噬细胞识别并清除。文章对启动necroptosis的受体分子、传递执行细胞坏死的重要分子和坏死细胞的清除过程进行了概述。
Programmed necrosis called necroptosis, is different from traditional necrosis and apoptosis, it has attracted considerable attention over the last few years. Necroptosis can be initiated through many factors such as tumor necrosis factor receptor (TNFR) or pattern recognition receptor (PRR), and receptor-interacting protein (RIP) 1 and 3 are two key proteins during the process. A lot of molecules have been characterized as modulators and effectors of necroptosis, includ-ing poly(ADP-ribose) polymerase (PARP-1), reactive oxygen species (ROS), Ca2+, which can destruct mitochondria or other organelles and induce cell dead through caspase-independent pathway. Then, damage-associated molecular pattern (DAMP) molecules were released from necroptosis cells, recognized and internalized by phagocytes. Here, we briefly dis-cuss the initiation and execution of necroptosis and the clearance of death cells.