位置:成果数据库 > 期刊 > 期刊详情页
改进的基于AdaBoost算法的人脸检测方法
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]武汉理工大学计算机科学与技术学院,武汉430070
  • 相关基金:国家自然科学基金资助项目(60572015);国家“973”重大基础研究前期研究专项资助项目(2004CCA02500)
中文摘要:

针对传统AdaBoost算法的不足,分析了训练过程中出现的退化问题及样本权重扭曲的现象,并提出了解决这一问题的有效方法。该方法对样本权重的更新规则进行了适当的调整,即为每一轮循环设定一个权重更新阈值,根据样本是否被错误分类以及当前权重是否大于该阈值来更新样本权重,从而限制了困难样本权重的过分增大。使用该方法训练级联人脸检测器,试验结果表明,该方法较好地解决了传统AdaBoost算法所出现的退化问题,在保证检测率的同时降低了误检率。

英文摘要:

Focusing on the disadvantages of classical AdaBoost algorithm, this paper mainly analysed the issues of overfitting and distortion of sample weights in training process and come up with a new method to avoid the phenomenon of overfitting. The proposed approach set a weight threshold for each loop, and updated weight of sample according to whether the current weight was greater than the threshold, so that weights of hard samples would not expand too large. A cascade face detector was established using the method. The experimental results show that the new method will not lead to overfitting like classical AdaBoost often does, and it will reduce false alarm rate while holding a high detection rate.

同期刊论文项目
期刊论文 36 会议论文 11 著作 2
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049