位置:成果数据库 > 期刊 > 期刊详情页
Experimental Investigation of Hypersonic Flow and Plasma Aerodynamic Actuation Interaction
  • ISSN号:1009-0630
  • 期刊名称:《等离子体科学与技术:英文版》
  • 时间:0
  • 分类:V211.3[航空宇航科学与技术—航空宇航推进理论与工程;航空宇航科学技术] O53[理学—等离子体物理;理学—物理]
  • 作者机构:[1]Science and Technology on Plasma Dynamics Laboratory, School of Aeronautics and Astronautics Engineering, Air Force Engineering University, Xi'an 710038, China, [2]Unit 94170, Xi'an 710082, China, [3]Unit 95039, Shantou 515049, China
  • 相关基金:supported by National Natural Science Foundation of China (Nos. 51276197, 51207169)
中文摘要:

For hypersonic flow,it was found that the most efective plasma actuator is derived from an electromagnetic perturbation.An experimental study was performed between hypersonic flow and plasma aerodynamic actuation interaction in a hypersonic shock tunnel,in which a Mach number of 7 was reached.The plasma discharging characteristic was acquired in static flows.In a hypersonic flow,the flow field can afect the plasma discharging characteristics.DC discharging without magnetic force is unstable,and the discharge channel cannot be maintained.When there is a magnetic field,the energy consumption of the plasma source is approximately three to four times larger than that without a magnetic field,and at the same time plasma discharge can also afect the hypersonic flow field.Through schlieren pictures and pressure measurement,it was found that plasma discharging could induce shockwaves and change the total pressure and wall pressure of the flow field.

英文摘要:

For hypersonic flow, it was found that the most effective plasma actuator is derived from an electromagnetic perturbation. An experimental study was performed between hypersonic flow and plasma aerodynamic actuation interaction in a hypersonic shock tunnel, in which a Mach number of 7 was reached. The plasma discharging characteristic was acquired in static flows. In a hypersonic flow, the flow field can affect the plasma discharging characteristics. DC discharging without magnetic force is unstable, and the discharge channel cannot be maintained. When there is a magnetic field, the energy consumption of the plasma source is approximately three to four times larger than that without a magnetic field, and at the same time plasma discharge can also affect the hypersonic flow field. Through schlieren pictures and pressure measurement, it was found that plasma discharging could induce shockwaves and change the total pressure and wall pressure of the flow field.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《等离子体科学与技术:英文版》
  • 主管单位:中国科学院 中国科协
  • 主办单位:中国科学院等离子体物理研究所 中国力学学会
  • 主编:万元熙、谢纪康
  • 地址:合肥市1126信箱
  • 邮编:230031
  • 邮箱:pst@ipp.ac.cn
  • 电话:0551-5591617 5591388
  • 国际标准刊号:ISSN:1009-0630
  • 国内统一刊号:ISSN:34-1187/TL
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,美国科学引文索引(扩展库),英国科学文摘数据库
  • 被引量:89