位置:成果数据库 > 期刊 > 期刊详情页
项目反应时间的对数偏正态模型
  • ISSN号:1671-6981
  • 期刊名称:《心理科学》
  • 时间:0
  • 分类:O212[理学—概率论与数理统计;理学—数学]
  • 作者机构:[1]东北师范大学教育学部,长春130024, [2]东北师范大学应用统计教育部重点实验室,长春130024
  • 相关基金:国家自然科学基金项目(11501094,11201313);中央高校基本科研业务费(230026510);东北师范大学哲学社会科学校内青年基金项目(1409124)的资助
作者: 孟祥斌[1,2]
中文摘要:

近年来,项目反应时间数据的建模是心理和教育测量领域的热门方向之一。针对反应时间的对数正态模型和Box-Cox正态模型的不足,本文在van der Linden的分层模型框架下基于偏正态分布建立一个反应时间的对数线性模型,并成功给出模型参数估计的马尔科夫链蒙特卡罗(Markov Chain Monte Carlo,MCMC)算法。模拟研究和实例分析的结果均表明,与对数正态模型和BoxCox正态模型相比,对数偏正态模型表现出更加优良的拟合效果,具有更强的灵活性和适用性。

英文摘要:

The use of computerized testing has enabled us to routinely record the response times(RTs) of test takers on test items. It has long been known that RTs are an important source of information on test takers and test items. For instance, RTs can be used to evaluate the speed of a test, to detect cheating behaviors, to improve the selection of items in a computerized adaptive testing(CAT) and to design better tests. However, to make full use of the information contained in RTs, an appropriate statistical treatment of the RTs is required. The log-normal(LN) distribution has been most widely used to model the RTs from various tests. It permits the use of the nice statistical properties of a normal model for the log-transformed RTs. But the log transformed RTs do not always satisfy the normality assumption. Therefore, a more general approach to describing RT distribution would be preferred. One example is the Box-Cox normal(BCN) model proposed by Klein Entink et al.(2009), in which a power parameter is introduced to represent a number of different transformations. But the transformation parameter in the BCN model must be restricted to being common to all items in the test. Otherwise, things are different for item-specific transformations, that is, transformations result in item-specific scales. As a result, it is impossible to interpret differences between the item parameter estimates directly as differences between item characteristics. To do so, a more general model for RTs is required. Typically, RTs are non-negative, so their distribution is positively skewed. The skew normal distribution has been shown beneficial in dealing with asymmetric data in various theoretical and applied problems. And, to the author’s knowledge, it has not found application in the psychometric literature of RT modeling. Therefore, a log linear model for RTs has been developed based on the skew normal distribution in this paper. The log skew normal(LSN) model is more flexible than the BCN model, it permits researc

同期刊论文项目
期刊论文 34 会议论文 1 获奖 3
同项目期刊论文
期刊信息
  • 《心理科学》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术学会
  • 主办单位:中国心理学会
  • 主编:李其维
  • 地址:上海市中山北路3663号
  • 邮编:200062
  • 邮箱:xinlikexue@vip.163.com
  • 电话:021-62232236
  • 国际标准刊号:ISSN:1671-6981
  • 国内统一刊号:ISSN:31-1582/B
  • 邮发代号:4-317
  • 获奖情况:
  • 为国务院学位办审定为核心期刊
  • 国内外数据库收录:
  • 中国中国人文社科核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国社科基金资助期刊,中国国家哲学社会科学学术期刊数据库,中国北大核心期刊(2000版)
  • 被引量:46796