位置:成果数据库 > 期刊 > 期刊详情页
基于加速度时域特征的实时人体行为模式识别
  • ISSN号:1006-2467
  • 期刊名称:《上海交通大学学报》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]重庆邮电大学光电信息感测与传输技术重庆市重点实验室,重庆400065
  • 相关基金:国家自然科学基金(51175535),重庆市科委自然科学基金(CSTC2012jjB40009),2013重庆高校创新团队建设计划(智慧医疗系统与核心技术创新团队)资助项目
中文摘要:

针对高精度的实时人体行为模式识别,提出了一种基于加速度时域特征的行为模式识别算法.本算法选取时域特征作为唯一特征量,通过简化特征提取运算实现行为的实时识别,获得了高精度结果.通过在Android智能手机平台进行测试,每项动作识别正确率均可达80%以上.该算法相对于现有算法实时精度有明显提高,在手持终端领域具有较好的应用前景.

英文摘要:

An algorithm of activity pattern recognition based on the time domain feature of acceleration was proposed for real-time human activity pattern recognition with high accuracy. Time-domain analysis was used as the only method for extracting features. Computation of feature extraction was simplified to achieve real-time recognition of activity, and the ideal result with high accuracy was acquired at the same time. The data tests on Android smart phone indicate that the average accuracy of real-time activity recognition is above 80 %. The result proves that this algorithm has a much more high accuracy of real-time recognition compared with the existing algorithms, which has great application prospect in hand-held terminal areas.

同期刊论文项目
期刊论文 40 会议论文 12 获奖 1 专利 9 著作 2
同项目期刊论文
期刊信息
  • 《上海交通大学学报》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:上海交通大学
  • 主编:郑杭
  • 地址:上海市华山路1954号15F
  • 邮编:200030
  • 邮箱:shjt@chinajournal.net.cn
  • 电话:021-62933373 62932534
  • 国际标准刊号:ISSN:1006-2467
  • 国内统一刊号:ISSN:31-1466/U
  • 邮发代号:4-256
  • 获奖情况:
  • 1996年全国优秀科技期刊奖,1992年、1996年、1999年国家教育部系统优秀科技期刊奖,2002年“百种重点期刊奖”,2003年百种中国杰出学术期刊,2004年教育部全国高校优秀科技期刊一等奖,2004年“百种重点期刊奖”
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:30903