位置:成果数据库 > 期刊 > 期刊详情页
基于脉冲耦合神经网络的图像NMI特征提取及检索方法
  • ISSN号:0254-4156
  • 期刊名称:《自动化学报》
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]西安电子科技大学电子工程学院,西安710071, [2]天水师范学院物理与信息科学学院,天水741001, [3]兰州大学信息科学与工程学院,兰州730000
  • 相关基金:国家高技术研究发展计划(863计划)(2007AA12Z323); 国家自然科学基金(60772139 60872109); 高等学校博士学科点专项科研基金(200807011007); 天水师范学院“青蓝”人才工程基金资助
中文摘要:

为了简单有效地提取图像重要特征信息,从而更好地提高检索图像的精度,提出了一种基于脉冲耦合神经网络(Pulse coupled neural networks,PCNN)的图像归一化转动惯量(Normalized moment of inertia,NMI)特征提取及检索算法.首先利用改进简化PCNN模型相似神经元同步时空特性及指数衰降机制将图像分解为具有相关性的二值系列图像,然后提取反映原始图像目标形状、结构分布二值系列图像的一维NMI特征矢量信号,并将其应用在图像检索中;同时,考虑到二值系列图像间的相关性及不同图像间NMI序列值的差异性,引入了马氏距离结合Pearson积矩相关法的综合相似性度量方法.实验结果表明,所提算法对图像特征矢量序列具有良好抗几何畸变不变特性及对图像表述的唯一性,且具有较好的图像检索效果.

英文摘要:

In order to simply and effectively extract the information of important features in the image so as to improve the accuracy of the image retrieval, a novel algorithm of image normalized moment of inertia (NMI) feature extraction and retrieval based on pulse coupled neural networks (PCNN) is put forward. Firstly, the image is segmented into a series of binary correlation images using synchronous spatial-temporal characteristics of similar neurons and exponential attenuation mechanism of improved and simplified PCNN, and then a one-dimensional NMI feature vector signal of the binary series images, which can reflect the target shape and structure of the original image, is extracted, and applied to the image retrieval. Meanwhile, considering the correlation between binary series images and NMI sequence values differences between different images, the method of compounded similarity measurement of the combination of Mahalanobis distance and Pearson product-moment correlation is introduced. Experimental results show that the proposed algorithm has good performance of anti-geometric distortions and the uniqueness for different images expression to the vector sequence of image features, and has better image retrieval results.

同期刊论文项目
期刊论文 29 会议论文 5 专利 3 著作 1
同项目期刊论文
期刊信息
  • 《自动化学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国自动化学会 中国科学院自动化研究所
  • 主编:王飞跃
  • 地址:北京东黄城根北街16号
  • 邮编:100717
  • 邮箱:aas@ia.ac.cn
  • 电话:010-64019820
  • 国际标准刊号:ISSN:0254-4156
  • 国内统一刊号:ISSN:11-2109/TP
  • 邮发代号:2-180
  • 获奖情况:
  • 1997年获全国优秀期刊奖,1985、1990、1996、2000年获中国科学院优秀期刊二等奖,2002年获国家期刊奖
  • 国内外数据库收录:
  • 美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:27550