To improve the purity of the total phloroglucinols from Dryopteris crassirhizoma extracts, the separation and purification conditions of the total phloroglucinols from Dryopteris crassirhizoma were studied with DM-130 macroporous adsorption resin in this study. Adsorption rate, elution rate and purity of the total phloroglucinols were used as indexes to investigate the adsorption and desorption capacity of the total phloroglucinols with DM-130 macroporous adsorption resin. Through the study, the optimum sample concentration of the total phloroglucinols and maximum sample volume were 1.5 mg · m L-1 and 7 BV(210 m L), respectively. The optimum desorption conditions were achieved by using 80% ethanol as desorption solvent at elution flow rate of 1.0 m L · min-1. The result showed DM-130 macroporous adsorption resin performed effective adsorption and desorption. After purification, the purity of the total phloroglucinols increased by 11.5-fold.
To improve the purity of the total phloroglucinols from Dryopteris crassirhizoma extracts, the separation and purification conditions of the total phloroglucinols from Dryopteris crassirhizoma were studied with DM-130 macroporous adsorption resin in this study. Adsorption rate, elution rate and purity of the total phloroglucinols were used as indexes to investigate the adsorption and desorption capacity of the total phloroglucinols with DM-130 macroporous adsorption resin. Through the study, the optimum sample concentration of the total phloroglucinols and maximum sample volume were 1.5 mg·mL^-1 and 7 BV (210 mL), respectively. The optimum desorption conditions were achieved by using 80% ethanol as desorption solvent at elution flow rate of 1.0 mL·min^-1. The result showed DM-130 macroporous adsorption resin performed effective adsorption and desorption. After purification, the purity of the total phloroglucinols increased by 11.5-fold.