The effects of final air cooling temperature on the microstructure and mechanical properties of hot rolled 0.2C-1.9Mn-0.5Si-0.08P TRIP steel were studied by utilizing OM, SEM, TEM and tensile tests. Experimental results showed that in the multiphase microstructure of the investigated steel when the finish rolling temperature was about 820 ℃ and the final air cooling temperature was in the range of 630-700 ℃, the grain size of most of ferrite was finer (about 4 μm) and which had higher dislocation density, the bainite packets had chaotic orientations and lath boundaries of bainite were not quite straight, the retained austenite distributed in the ferrite grain boundaries or triradius was fine and dispersive, and their grain size was about 0.4-1.9 μm. With increasing the amount of ferrite, the volume fraction of retained austenite had a slight decrease. When the final air cooling temperature was 630 ℃, the steel had excellent mechanical properties, which was characterized by combination of continuous yielding, high strength (about 796 MPa) and high elongation (22.7%) as well as low yield/strength ratio (0.58); when the final air cooling temperature increased to 700 ℃, the matrix structure was bainite packets and the comprehensive properties were deteriorated.