为了对比不同典型全断面岩石掘进机(TBM)刀盘的力学性能,对刀盘倾覆力矩计算模型进行了修正。在理想工况、上软下硬地质和部分刀具磨损3种工况下,计算得到刀盘倾覆力矩的分布情况,并采用有限元法模拟得到刀盘掘进过程中应力分布规律。结果表明:刀盘的径向载荷远小于刀盘倾覆力矩,倾覆力矩对刀盘性能的影响远大于径向载荷;刀盘正面滚刀受载产生的倾覆力矩最大,其次是边缘滚刀,中心滚刀受载产生的倾覆力矩最小;在刀具磨损工况下,A刀盘总倾覆力矩在2 800 k N·m以上,比理想工况下要大7%;星形布局刀盘B的倾覆力矩比螺旋线布局刀盘A小,其力学性能和强度特性优于螺旋线布局刀盘。
To compare the mechanical performances of different typical full-face rock tunnel boring machine ( TBM) cutterheads, in this study, we revised the overturning moment calculation model. We then calculated the distribu-tion of the overturning moment under three different working conditions, i. e., ideal conditions, a soft-upper and hard-under stratum, and conditions in which part of the cutters are worn. Using finite element simulation, we also studied the cutterhead stress distribution in the process of excavation. The results show that the cutterhead’ s radial load is far less than its overturning moment, and therefore the overturning moment has a much greater effect on the cutterhead’ s performance. The overturning moment caused by a positive cutter loading is the largest, followed by edge-cutter loading, and the minimum loading is caused by a center cutter. In a worn cutter condition, the maxi-mum total overturning moment of cutterhead A is greater than 2 800 kN·m, which is 7% greater than the ideal. The overturning moment of the star topology cutterhead is smaller than that of the spiral cutterhead, and its mechan-ical performance and strength property is superior.