利用AspenPlus软件建立了加压串行流化床生物质气化过程的模型,并将模拟数值与试验结果相比较,验证了模拟研究的可行性。分别研究了气化温度Tg,气化压力Pg以及水蒸气与生物质的质量比(S/B)对生物质合成气的成分、氢碳比、气化份额、生物质合成气产率和生物质碳转化率等的影响。结果表明气化温度、气化压力和S/B对生物质气化过程有很重要的影响,适当地提高气化温度和气化压力对制取生物质合成气有利(r。在800oC左右,P。在0.4MPa左右),合适的S/B在0.4左右。
With Aspen Plus software, the simulation of the whole process of bio-syngas production from gasification via pressurized interconnected fluidized beds was carried out, and the model was validated by the comparison of simulation results and experimental results. The effects of gasification temperature (Ts), gasification pressure (pg) and steam to biomass ratio (S/B) on bio-syngas composition, H2/CO ratio, gasification proportion, bio-syngas yield, and carbon conversion were studied. The results showed that gasification temperature, gasification pressure and S/B had great influences on the biomass gasification process and the suitable gasification temperature and pressure was around 800℃ and 0.4 MPa.