位置:成果数据库 > 期刊 > 期刊详情页
一种基函数神经网络最优隐神经元数目快速确定算法
  • ISSN号:1000-7180
  • 期刊名称:《微电子学与计算机》
  • 时间:0
  • 分类:TP183[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]广东海洋大学信息学院,广东湛江524025, [2]中山大学信息科学与技术学院,广东广州510275, [3]浙江大学CAD/CG国家重点实验室,浙江杭州310058
  • 相关基金:国家自然科学基金项目(60643004,60775050);浙江大学CAD/CG国家重点实验室开放课题(A0908)
中文摘要:

以线性无关的基函数作为隐层神经元的激励函数,构建了一类基函数神经网络,且推导出该类神经网络的学习算法;在此基础上,设计了一种基于指数增长和折半删减的快速最小隐神经元数目确定算法.仿真实验表明,此算法能自适应地、快速有效地确定网络最小隐层神经元数目.

英文摘要:

In this paper, a basis function neural network is constructed, of which the hidden-layor neurons are activated with linear independence basis function. Accordingly, the learning algorithm for the constructed neural network is derived and a fast algorithm based on exponential-growth and binary-delete search strategy is proposed to determinate the optimal number of hidden-layor neurons. The simulation results substantiate that our algorithm can adaptively, quickly and efficiently determine number of hidden neurons in the neural network.

同期刊论文项目
期刊论文 14 会议论文 10 著作 1
期刊论文 24 会议论文 7 专利 2 著作 4
同项目期刊论文
期刊信息
  • 《微电子学与计算机》
  • 中国科技核心期刊
  • 主管单位:中国航天科技集团公司
  • 主办单位:中国航天科技集团公司第九研究院第七七一研究所
  • 主编:李新龙
  • 地址:西安市雁塔区太白南路198号
  • 邮编:710065
  • 邮箱:mc771@163.com
  • 电话:029-82262687
  • 国际标准刊号:ISSN:1000-7180
  • 国内统一刊号:ISSN:61-1123/TN
  • 邮发代号:52-16
  • 获奖情况:
  • 航天优秀期刊,陕西省优秀期刊一等奖
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:17909