位置:成果数据库 > 期刊 > 期刊详情页
基于项目流行度的协同过滤TopN推荐算法
  • ISSN号:1000-7024
  • 期刊名称:《计算机工程与设计》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]华侨大学计算机科学与技术学院,福建厦门361000
  • 相关基金:国家自然科学基金项目(10901062);福建省高等学校杰出青年科研人才培育计划基金项目(11FJPY01);福建省高等学校新世纪优秀人才支持计划基金项目(2012FJ-NCET-ZR01)
中文摘要:

为了提高推荐系统挖掘用户感兴趣的冷门项目的能力,提出一种改进的协同过滤推荐算法.在传统算法基础上考虑项目流行度的影响,将其作为权重因子引入到相似性计算和推荐过程中,以提高用户相似性计算的可靠性和冷门项目在最终的项目推荐过程中的影响力.典型数据集上的对比实验表明,该算法能够在保持甚至提高推荐准确度的前提下,有效挖掘到用户感兴趣的冷门项目.

英文摘要:

To improve the recommendation systems' ability of mining unpopular items,an improved collaborative filtering algorithm is proposed.Based on traditional algorithm,items' popularity is considered as a weighting factor in similarity calculating and recommendation process to boost the reliability of user-similarity calculating and the influence of unpopular items in final recommending.Comparative experiments on typical dataset show that the algorithm is able to mine unpopular items effectively under the premise of maintaining or even improving recommendation accuracy.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与设计》
  • 北大核心期刊(2011版)
  • 主管单位:中国航天科工集团
  • 主办单位:中国航天科工集团二院706所
  • 主编:汤铭瑞
  • 地址:北京142信箱37分箱
  • 邮编:100854
  • 邮箱:ced@china-ced.com
  • 电话:010-68389884
  • 国际标准刊号:ISSN:1000-7024
  • 国内统一刊号:ISSN:11-1775/TP
  • 邮发代号:82-425
  • 获奖情况:
  • 中国科学引文数据库来源期刊,中国学术期刊综合评价数据库来源期刊,中国科技论文统计与分析用期刊
  • 国内外数据库收录:
  • 波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:45616