证明了带变量核分数次 Marcinkiewicz积分 μΩ,α在 Hardy空间及 Herz型 Hardy空间上的有界性。利用 Hardy空间及 Herz型 Hardy空间的原子分解定理,得到了在核函数 Ω满足一定条件下算子 μΩ,α的 H1,Ln( n-α) 型和(Hp,Lq)型以及从 Herz型 Hardy空间到 Herz空间的有界性结论。
The boundedness of the fractional type Marcinkiewicz integralsμΩ,α with variable kernels on Hardy spaces and Herz type Hardy spaces are established. Some properties of μΩ,α which kernel satisfies certain condition are given by the atomic decomposition theorem. Also, the integral μΩ,α is an operator of type (H1,Ln( n-α)) and of type (Hp,Lq). The boundedness from Herz type Hardy spaces to Herz spaces about the integral μΩ,α are presented.