位置:成果数据库 > 期刊 > 期刊详情页
面向LAMOST的天体光谱离群数据挖掘系统研究
  • ISSN号:1000-0593
  • 期刊名称:《光谱学与光谱分析》
  • 时间:0
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]太原科技大学计算机科学与技术学院,山西太原030024, [2]中国科学院自动化研究所模式识别国家重点实验室,北京100080
  • 相关基金:国家自然科学基金项目(60573075),国家“863”高技术研究发展计划基金项目(2003AA133060)和山西省自然科学基金项目(2006011041)资助
中文摘要:

在宇宙中寻求未知天体是人类探索宇宙奥妙所追求的目标之一,离群数据挖掘是发现未知天体光谱数据的一种有效途径。文章首先以VC++和Oracle9i为开发工具,设计与实现了面向LAMOST的恒星光谱离群数据挖掘系统,并给出了其软件体系结构和模块功能。其次,对基于中值滤波器的恒星光谱数据预处理、基于距离的恒星光谱数据聚类、基于距离支持度的恒星光谱数据离群数据挖掘、基于主分量分析法PCA的恒星光谱数据离群数据的三维可视化等主要关键技术进行了详细描述。最后,基于SDSS恒星光谱数据的运行结果表明,利用该系统寻找天体光谱离群数据是可行的,从而为寻找未知的、特殊的天体光谱数据提供了一种新途径。

英文摘要:

To find unknown celestial bodies is one of main goals in mankind's universe exploration, and outlier mining is a kind of effective way of finding unknown celestial bodies from mass spectrum data. In the present work, using VC++ and Oracle9i as development tools, an outlier mining system for star spectra is designed and realized, and its software architecture and function modules are outlined. At the same time, the system's key components such as star spectrum data preprocessing based on median filters, clustering of star spectrum data based on distance, outlier mining of star spectrum data based on distance support and three-dimensional visualization of star spectrum outlier based on PCA, are elaborated. The preliminary experimental results based on SDSS star spectrum data show that the system is workable for outlier mining of celestial body spectrum data, and a new kind of effective way of finding unknown and peculiar celestial body spectrum data.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《光谱学与光谱分析》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国光学学会
  • 主编:高松
  • 地址:北京海淀区魏公村学院南路76号
  • 邮编:100081
  • 邮箱:chngpxygpfx@vip.sina.com
  • 电话:010-62181070
  • 国际标准刊号:ISSN:1000-0593
  • 国内统一刊号:ISSN:11-2200/O4
  • 邮发代号:82-68
  • 获奖情况:
  • 1992年北京出版局编辑质量奖,1996年中国科协优秀科技期刊奖,1997-2000获中国科协择优支持基础性高科技学术期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国生物医学检索系统,美国科学引文索引(扩展库),英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:40642