研究'坏'的Boussinesq型方程的初边值问题utt-uxx-uxxtt-aux4+ux4tt=(u)xxu(0,t)=u(1,t)=uxx(0,t)=uxx(1,t)=0u(x,0)=φ(x),ut(x,0)=ψ(x)解的存在性,并给出解爆破的充分条件.
The local existence of solution of the initial boundary value problem for the following 'bad' Boussinesq type equation utt-uxx-uxxtt-aux4+ux4tt=(u)xxu(0,t)=u(1,t)=uxx(0,t)=uxx(1,t)=0u(x,0)=φ(x),ut(x,0)=ψ(x)is studied,and the sufficient conditions of blow up of the solution are given.