This study investigated the role of netrin-1 in placental vascular development. In vitro rat aortic ring assay and in vivo Matrigel plug assay were conducted to exmaine the effect of netrin-1 on angiogenesis. Human placental microvascular endothelial cells (HPMECs) were isolated and cultured and their viability, migration and tubular formation were studied, in order to examine the effects of netrin-1. The results showed that netrin-1 potently stimulated neovascularization in a mouse Matrigel plug in vivo and the sprouting of endothelial cells in rat aortic rings in vitro. In addition, netrin-1 enhanced the viability, migration and tube formation of HPMECs. Our study suggested that netrin-1 could significantly promote the formation of blood vessels of human placenta and may be a potential target for developing new therapeutic strategies for placental vasculature-related diseases.
This study investigated the role of netrin-1 in placental vascular development. In vitro rat aortic ring assay and in vivo Matrigel plug assay were conducted to exmaine the effect of netrin-1 on angiogenesis. Human placental microvascular endothelial cells (HPMECs) were isolated and cultured and their viability, migration and tubular formation were studied, in order to examine the effects of netrin-1. The results showed that netrin-1 potently stimulated neovascularization in a mouse Matrigel plug in vivo and the sprouting of endothelial cells in rat aortic rings in vitro. In addition, netrin-1 enhanced the viability, migration and tube formation of HPMECs. Our study suggested that netrin-1 could significantly promote the formation of blood vessels of human placenta and may be a potential target for developing new therapeutic strategies for placental vasculature-related diseases.