采用晶体相场法研究了二元合金形变过程中界面Kirkendall空洞的形貌演化和生长过程。研究表明,Kirkendall空洞优先在界面处形核,空洞尺寸随着演化时间和应变速率的增加而增大。在恒定和循环应变速率较大时,空洞发生明显的合并生长。当循环应变速率大于1.0×10?6时,空洞生长指数随应变速率的增加而增大;当循环应变速率小于9.0×10?7时,空洞生长指数随着应变速率的增加呈先增大后减小的变化规律。在相同的循环应变速率不同循环周期长度情况下,空洞生长指数随着循环周期长度的增加呈先增大后减小的变化规律。
The formation and growth of Kirkendall voids in a binary alloy system during deformation process were investigated byphase field crystal model.The simulation results show that Kirkendall voids nucleate preferentially at the interface,and the averagesize of the voids increases with both the time and strain rate.There is an obvious coalescence of the voids at a large strain rate whenthe deformation is applied along the interface under both constant and cyclic strain rate conditions.For the cyclic strain rate appliedalong the interface,the growth exponent of Kirkendall voids increases with increasing the strain rate when the strain rate is largerthan1.0×10-6,while it increases initially and then decreases when the strain rate is smaller than9.0×10?7.The growth exponent ofKirkendall voids increases initially and then decreases gradually with increasing the length of cyclic period under a square-waveform constant strain rate.