位置:成果数据库 > 期刊 > 期刊详情页
基于MKSVM和MRF的高光谱影像分类方法
  • ISSN号:1001-070X
  • 期刊名称:国土资源遥感
  • 时间:2015
  • 页码:42-46
  • 分类:TP751[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]信息工程大学,郑州450001, [2]江西省数字国土重点实验室(东华理工大学),南昌330000
  • 相关基金:国家自然科学基金青年科学基金项目“机载低空摄像机在线检校与视频影像实时处理技术研究”(编号:41201477)和江西省数字国土重点实验室开放基金项目“联合光谱/空间光谱信息的高光谱影像分类技术”(编号:DLLJ201403)共同资助.
  • 相关项目:机载低空摄像机在线检校与视频影像实时处理技术研究
中文摘要:

为充分利用高光谱遥感影像中丰富的光谱和空间信息,提出了一种基于多核支持向量机(multiple kernel support vector machine,MKSVM)和马尔科夫随机场(markov random field,MRF)的影像分类方法。该方法首先利用MKSVM分类器对影像进行分类处理,再利用MRF对初始分类结果进行空间结构规则化,得到最终分类结果。通过对AVIRIS高光谱影像的分类实验表明,该方法有效地消除了分类结果中同质区域内的“噪声”,分类精度提高了3%左右。

英文摘要:

To fully utilize the spectral and spatial information rich in hyperspectral remote sensing images, this paper proposes a hyperspectral images classification method based on multiple kernel support vector machine (MKSVM) and Markov random field (MRF). Firstly, the MKSVM classifier is used to classify hyperspectral images, then the MRF is used to regularize the initial classification results in the spatial structure, and the final classification results are obtained in the end. The experiment on AVIRIS hyperspectral image shows that the proposed method not only effectively eliminates the "noise" in the homogeneous regions within the classification results but also improves the classification accuracy by about 3 %.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《国土资源遥感》
  • 北大核心期刊(2011版)
  • 主管单位:国土资源部
  • 主办单位:中国国土资源航空物探遥感中心
  • 主编:唐文周
  • 地址:北京海淀区学院路31号航空物探遥感中心
  • 邮编:100083
  • 邮箱:gtzyyg@163.com
  • 电话:010-62060291 62060292
  • 国际标准刊号:ISSN:1001-070X
  • 国内统一刊号:ISSN:11-2514/P
  • 邮发代号:82-344
  • 获奖情况:
  • 中国科技核心期刊,《CAJ-CD》执行优秀奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,中国中国科技核心期刊,中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:9707