The potential energy surface of a CO 2 –N 2 mixture is determined by using an inversion method, together with a new collision integral correlation [J. Phys. Chem. Ref. Data 19 1179 (1990)]. With the new invert potential, the transport properties of CO2–N2 mixture are presented in a temperature range from 273.15 K to 3273.15 K at low density by employing the Chapman–Enskog scheme and the Wang Chang–Uhlenbeck–de Boer theory, consisting of a viscosity coefficient, a thermal conductivity coefficient, a binary diffusion coefficient, and a thermal diffusion factor. The accuracy of the predicted results is estimated to be 2% for viscosity, 5% for thermal conductivity, and 10% for binary diffusion coefficient.
The potential energy snrface of a CO2-N2 mixture is determined by using an inversion method, together with a new collision integral correlation [J. Phys. Chem. R@ Data 19 1179 (1990)]. With the new invert potential, the transport properties of CO2-N2 mixture are presented in a temperature range front 273.15 K to 3273.15 K at low density by employing the Chapman-Enskog scheme and the Wang Chang-Uhlenbeck de Boer theory, consisting of a viscosity coefficient, a thermal conductivity coefficient, a binary diffusion coefficient, and a thermal diffusion factor. The accuracy of the predicted results is estimated to be 2% for viscosity, 5% for thermal conductivity, and 10% for binary diffusion coefficient.