位置:成果数据库 > 期刊 > 期刊详情页
基于旋转复小波变换的图像纹理谱聚类算法
  • ISSN号:1003-6059
  • 期刊名称:《模式识别与人工智能》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]浙江大学计算机科学与技术学院,杭州310027, [2]浙江工商大学计算机与信息工程学院,杭州310018
  • 相关基金:国家自然科学基金项目(No.60473106)、国家863计划项目(No.2007AA012311,2007AA0421A5)资助
中文摘要:

纹理作为图像的重要信息,在图像检索中起着重要作用.本文提出一种基于图像纹理的聚类算法.首先采用双树复小波加旋转复小波分解图像,得到十二个方向的高频数据.然后对每个高频段提取直方图签名.通过把直方图签名作为纹理特征之一,来计算数据点之间的相似性,采用改进的谱聚类进行降维.最后,对降维后的数据进行K-means聚类.因为本文采用直方图签名的方式有效地表示了在双树和旋转复小波分解后各个方向上的特征信息,同时在谱聚类过程中,提出一种动态的方式,根据数据点密度来计算数据间的相似度,从而有效地发掘了数据之间的局部相关性.实验表明,本文算法能够较显著地提高聚类的正确性.

英文摘要:

As an important feature, texture plays a critical role in image retrieval. A clustering method is proposed based on image texture. Rotated complex wavelet (RCW) and dual-tree complex wavelet transform (DT-CWT) are used to decompose image into high frequency coefficients in twelve directions. The histogram signatures can be computed from each high frequency sub-band. Combined with other features, those signatures are employed to compute the similarity between data points for the improved spectral clustering to reduce dimensionality. In the final step, k-means is applied on the dimensionality-reduced data to get the clustering result. The proposed histogram signature for RCW and DT-CWT decomposition can capture the high frequency information in each direction effectively. In addition, an adaptive approach is proposed to compute the similarity between data points in spectral clustering. The experimental results show the proposed method outperforms the traditional methods remarkably.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《模式识别与人工智能》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会 中国自动化学会
  • 主办单位:国家智能计算机研究开发中心 中国科学院合肥智能机械研究所
  • 主编:郑南宁
  • 地址:安徽省合肥市蜀山湖路350号中国科学院合肥智能机械研究所
  • 邮编:230031
  • 邮箱:bjb@iim.cas.cn
  • 电话:0551-5591176
  • 国际标准刊号:ISSN:1003-6059
  • 国内统一刊号:ISSN:34-1089/TP
  • 邮发代号:26-69
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:10169