本项目主要致力于几类具有非标准增长性条件的拟线性椭圆和抛物型偏微分方程的研究.这类方程有着丰富的物理意义和广泛的应用背景,如弹性力学,电流变流体动力学和图像处理等实际问题都可以归结为具非标准增长性条件的拟线性椭圆与抛物型方程来描述.尽管对于这类方程的研究已取得许多重要成果,但许多物理现象尚不能从这些方程已有的数学理论中得到准确和合理的解释,仍然有许多深刻的数学问题值得进一步探讨.我们将在弱解、重整化解和熵解等框架下研究这些方程解的适定性及各种解之间的内在联系,证明椭圆与抛物型p(x)-Laplace方程弱解的全局梯度估计以及指数p(x)趋于1和趋于无穷时解的渐近行为.
英文主题词Elliptic;Parabolic;Quasilinear;Well-posedness;Regularity