本项目研究金融风险管理中相容风险度量(CRM)的设计与估计。我们从金融机构具体实际出发考虑两种情形。在第一种情形下,我们利用样本数据构造分布参数的置信域。然后假设分布参数在该置信域中变动,来考虑最大期望损失,从而设计好一个对应于该置信域的CRM。我们应用似然比方法把CRM估计问题转化为标准的随机优化问题,继而应用近年来发展成熟的样本平均近似方法,设计一序列凸优化近似的算法来解决该优化问题。在第二种情形下,我们假设概率测度集所包含的分布个数为有限个,并将相应的CRM估计问题转化为一个大规模ranking and selection(R&S)问题。我们运用云计算的思想和框架,结合R&S问题的算法方法来处理所得问题。在云计算的构架下,用以估计CRM的算法设计会有很大自由度,我们将集中研究如何设计和优化算法使得估计更有效。本研究将为金融机构更全面地评估其风险提供强有力的工具。
英文主题词Simulation;Input Uncertainty;Financial Risk Management;Simulation Optimization;Risk Measure