本项目拟研究几类重要的基于二次规划的大规模非线性半定规划问题(1).凸二次目标函数加上entropy项的半定规划问题;(2).凸二次目标函数加上log-determinant项的半定规划问题;(3).带秩约束的二次半定规划问题。这些问题在信息、统计、金融、图像处理等领域有着广泛的应用。几类问题之间虽然形式各有差别,但从问题类型和解决途径上又有不少相似之处。为了求解这些问题,我们将充分挖掘问题本身的特点,拟采用不精确的一阶和二阶方法混合使用的办法,设计复杂度为O(1/k^2)的高效数值算法,编写应用软件。对这几类特殊大规模非线性半定规划问题的研究,必能为更一般的非线性半定规划问题的解决提供新的工具、方法和思想。
英文主题词nonlinear semidefinite programming;quadratic programming;proximal augmented Lagrangian method;Faà di Bruno's formula;