Girsanov变换是马尔可夫过程理论中重要的变换之一,Girsanov定理在金融数学特别是期权定价理论中起着重要的作用,研究马尔可夫过程在Girsanov变换下的性质及其应用具有重要的理论意义和应用价值。虽已有很多学者研究了马尔可夫过程在Girsanov变换下的性质,但大都是关于对称马尔可夫过程的研究,采用狄氏型的研究方法。本项目以一般(非对称)的马尔可夫过程为研究对象,同时假设此马尔可夫过程是一个半鞅,研究此马尔可夫过程在局部绝对连续测度下的转移密度函数的表达形式以及位势分析(包括Revuz测度,能量泛函,容量等),采用马尔可夫桥和乘泛函的研究方法,然后将这些结果应用于具体的期权定价模型中。本项目旨在揭示一般的马尔可夫过程在一般的Girsanov变换下的性质,特别是位势分析方面。本项目的研究结果将对马尔可夫过程的理论与Girsanov定理在各个领域的应用起到重要的补充作用。
英文主题词Girsanov theorem;transition density function;Revuz measure;energy functional;Levy system