位置:立项数据库 > 立项详情页
感染性疾病调控网络的动力学模型与并行算法
  • 项目名称:感染性疾病调控网络的动力学模型与并行算法
  • 项目类别:重大研究计划
  • 批准号:91230118
  • 申请代码:C050506
  • 项目来源:国家自然科学基金
  • 研究期限:2013-01-01-2015-12-31
  • 项目负责人:邹秀芬
  • 负责人职称:教授
  • 依托单位:武汉大学
  • 批准年度:2012
中文摘要:

感染性疾病对全球公共健康构成巨大威胁,病毒和细菌感染诱导机体炎症反应的调控网络是极其复杂的动态调控网络。本项目旨在通过对感染性疾病动态调控网络的构建与分析,提炼出可计算模型以及高维优化问题进行研究,开发满足实际精度要求的动力学模型,探索高性能的并行进化算法及其理论。具体地,以高通量的多组学数据为基础,将构建炎症因子相互作用网络转化为以蛋白表达相关性为目标函数,以基因表达特异性与关联性为约束条件的单目标优化问题求解;建立炎症因子调控网络的非线性动力学模型,探索用整数与实数变量混合的高维多目标优化问题的并行算法来识别网络的参数;研究调控网络的动力学性态与疾病表型关联的定量评估方法等。将这些方法和结果应用于识别A型流感病毒感染诱导细胞炎症反应的复杂调控网络及其分子机制,并进行生物学实验验证,为揭示感染性疾病的致病机制提供新思路。本项目形成的理论成果和计算技术可更广泛应用于其它复杂的生物学系统。

结论摘要:

英文主题词Systems biology;Regulation network;Nonlinear dynamical model;parallel algorithm;Influenza A virus


成果综合统计
成果类型
数量
  • 期刊论文
  • 会议论文
  • 专利
  • 获奖
  • 著作
  • 103
  • 0
  • 0
  • 0
  • 0
期刊论文
相关项目
期刊论文 3 会议论文 8
邹秀芬的项目