首先给出超代数上的分数阶超迹恒等式,利用李超代数上的广义零曲率方程得到了分数阶超Hamilton结构.作为应用,利用分数阶超迹恒等式建立了分数阶超Broer-Kaup-Kupershmidt族及其分数阶超Hamilton结构.最后导出了分数阶超Broer-Kaup-Kupershmidt族的分数阶自相容源.文中的方法还可以应用于其他的分数阶超孤子族.
In this paper,a fractional supertrace identity on superalgebras is proposed,from which the fractional super Hamiltonian structures of generalized zero curvature equations associated with Lie superalgebras is derived.As an application,we obtain the fractional super Broer-Kaup-Kupershmidt hierarchy and its fractional super Hamiltonian structure by using of fractional supertrace identity.Finally,we establish the fractional super Broer-Kaup-Kupershmidt hierarchy with fractional self-consistent sources.The method can be generalized to other fractional super hierarchies.