Super-KN Hierarchy and Its Super-Hamiltonian Structure
- ISSN号:0253-6102
- 期刊名称:Communications in Theoretical Physics
- 时间:2011.3.3
- 页码:391-395
- 分类:O175.29[理学—数学;理学—基础数学] TP311.13[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
- 作者机构:[1]Department of Mathematics, Shangqiu Normal University, Shangqiu 476000, China, [2]Department of Mathematics, Shanghai University, Shanghai 200444, China, [3]Department of Physics and Information Engineering, Shangqiu Normal University, Shangqiu 476000, China
- 相关基金:Project supported by the National Natural Science Foundation of China (Grant Nos. 61072147 and 11071159), the Natural Science Foundation of Shanghai, China (Grant No. 09ZR1410800), the Science Foundation of the Key Laboratory of Mathematics Mechanization, China (Grant No. KLMM0806), the Shanghai Leading Academic Discipline Project, China (Grant No. J50101), and the Key Disciplines of Shanghai Municipality of China (Grant No. S30104).
- 相关项目:可积系统若干问题的计算机代数研究和理论探索
关键词:
层次结构, 非线性化, 二进制, LIOUVILLE可积, 对称约束, 哈密顿系统, LAX对, 动力学, symmetry constraints, binary nonlinearization, super classical-Boussinesq hierarchy, super finite-dimensional integrable Hamiltonian systems
中文摘要:
The symmetry constraint and binary nonlinearization of Lax pairs for the super classical-Boussinesq hierarchy is obtained.Under the obtained symmetry constraint,the n-th flow of the super classical-Boussinesq hierarchy is decomposed into two super finite-dimensional integrable Hamiltonian systems,defined over the super-symmetry manifold with the corresponding dynamical variables x and t n.The integrals of motion required for Liouville integrability are explicitly given.
英文摘要:
The symmetry constraint and binary nonlinearization of Lax pairs for the super classical-Boussinesq hierarchy is obtained. Under the obtained symmetry constraint, the n-th flow of the super classical-Boussinesq hierarchy is decomposed into two super finite-dimensional integrable Hamiltonian systems, defined over the super-symmetry manifold with the corresponding dynamical variables x and tn. The integrals of motion required for Liouville integrability are explicitly given.